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The boundary layer on a flat plate moving transversely 
in a rotating, stratified fluid 

By LARRY G. REDEKOPP? 
Department of Aerospace Engineering Sciences, University of Colorado 

(Received 2 January 1970 and in revised form 16 October 1970) 

The motion of a horizontal plate moving in its own plane in a rotating, stratified 
fluid is studied to establish the parameter conditions specifying the onset of 
boundary-layer blocking for the entire range of Rossby and Russell numbers. 
Rkgimes in Rossby-Russell number space defining the range of applicability of 
the inertia-viscous, buoyancy-viscous, and Coriolis-viscous boundary-layer 
balances are presented, and similarity solutions valid over a limited region of 
that space are derived. The plate drag and heat transfer are computed from the 
similarity solutions. 

1. Introduction 
Kelly & Redekopp (1970) and Redekopp (1970) studied the motion of a finite 

horizontal plate in a stratified, non-rotating fluid. The results obtained from those 
analyses showed that stratification significantly affects the plate drag, and 
indeed the entire flow structure, when the Russell number is greater than unity. 
Further, the boundary layer on the plate was shown to be blocked; that is, an 
upstream viscous wake and a boundary layer whose thickness decreases in the 
downstream direction appears, when the Russell number exceeds a critical power 
of the Reynolds number, the exponent depending in an essential way on the 
Prandtl number. In  the present study the coupled influence of fluid rotation and 
stratification on the boundary-layer-blocking condition and the frictional drag 
and heat-transfer characteristics of a horizontal plate are investigated. 

Long (cf. Martin 1966) showed that the blocking of a horizontal boundary 
layer in a stratified flow could be most clearly understood on the basis of a 
vorticity balance in the boundary layer. The additional vorticity generated via 
the Coriolis forces in a rotating, stratified flow will alter the vorticity balance 
which led to the results reported in Kelly & Redekopp (1970) and Redekopp 
(1970), providing the possibility of a modified or extended blocking condition. 

2. Formulation 
We consider a thin, horizontal plate of length L moving in its own plane with 

constant velocity U, in a stratified fluid rotating about a vertical axis with 
constant angular speed Q. The fluid is bounded in the vertical by two infinite 
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horizontal planes, also rotating at frequency SZ, and the stratification in the 
uniformly rotating state is statically stable and prescribed by a linear variation of 
temperature with altitude 

T 9  = To(1+Po4 ( P o  ' 0). (2.1) 

To defines the undisturbed fluid temperature a t  the altitude of the plate and 
/3g1 is the scale height of the stratification. The above temperature distribution 
corresponds only to an approximate equilibrium solution of the equations of 

I 

R 

t 

motion for a rotating fluid valid when the quantity ( Q2L/g) is small compared to 
unity (cf. Greenspaii 1968, p. 13)) a restriction we assume to be satisfied through- 
out. We describe the thermodynamic state of the fluid by the equation 

where a. denotes the (constant) coefficient of thermal expansion. The temperature 
T, of the moving plate is taken to  be constant, but different from the temperature 
To of the undisturbed fluid a t  the same altitude. A schematic representation of the 
flow model appears in figure 1. 

The equations of motion with the velocity measured relative to  a frame rotating 
with angular velocity SZ are (cf. Greenspan 1968, p. 16) 

v.q = 0, (2.3) 

and 

2 a0 1 %+q.Vq+-,$ A q = -Vm*+-T*k+-V2q 
at* Ro F R 

(2.5) 
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In  writing these equations we have invoked the Boussinesq approximation, 
which is consistent with the equation of state (2.2)) and have defined dimension- 
less variables as 

The quantities a, P and 8 are dimensionless constants given by 

(2.7) 
Tw - TO 

TO 
a = aoTo, P = P 0 L  and B=-. 

The remaining parameters are the Froude number (P = U$/(gL)),  the Prandtl 
number (P = v,/K,), the Rossby number (Ro = Uo/(sZL)), and the Reynolds 
number (R = UoL/v0). Without loss of generality we take a equal to unity in the 
following analysis. The h a 1  results can be applied to fluids with arbitrary a if 
both ,8 and f3 are replaced everywhere by a/3 and a@, but the Boussinesq equations 
are only a valid first-order approximation to the complete equations of motion if 
aP and a0 are small compared to unity (Mihaljan 1962). In  what follows the ratio 
/3/0is assumed to be of order unity. No restrictions are imposed on the magnitudes 
of the remaining parameters except that (sZ2L/g) be small as mentioned earlier. 

Transforming to a co-ordinate system fixed to the leading edge of the plate, 
assuming the plate to be infinitely wide so that the velocity can be expressed in 
terms of a stream function 

a@ q = j  XV@(&+jV = t-+jv-k-, 
ax ax 

and eliminating the reduced pressure 7r by taking the vector cross product of the 
momentum equation (2.4)) the set of governing equations can be written in the 
form 

- Ru2Tx = 0, (2.9) 

and 

(2.10) 

(2.1 I.) 

The first term in the bracket expressions represents the non-linear advective 

a a 
operator defined as 

L , , , ,  = @ a z - @ z & y  (2.12) 
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the symbols in parentheses denoting the independent and dependent variables 
of the operator. The asterisk has been deleted from the perturbation temperature 
in (2.9) and (2.11), since it is clearly dimensionless. The Russell number defined 
by (cf. Miles 1969) 

(2.13) 

has been introduced in the vorticity equation (2.9). The quantity (gP0)4 is the 
intrinsic or Brunt-Vaisala frequency, which is a constant for the linear stratifica- 
tion model and the Boussinesq approximation. 

Boundary conditions to be used in the solution of the foregoing equations are 
the no-slip conditions at the plate and boundaries. On the plate these conditions 
are given by 

w ~ , ~ )  = $ G , ~ )  = $&,O) = 0 and Th,o) = 1 (0 < x < 1). (2.14) 

On the boundaries located at z = H / L ,  the conditions are 

v = $ = T = O  and 11. ,=1.  (2.15) 

In the following analysis we take H 2 O(L), so that, as far as the boundary-layer 
solutions are concerned, the latter conditions can be appliedat x approaching plus 
or minus infinity. Further, solutions are presented only for the boundary layer on 
the upper surface of the plate, since, in the Boussinesq limit, the lower-boundary- 
layer solution can be obtained by a simple reflexion. 

3. The boundary-layer approximation 
The approximate form of (2.9)-(2.11), describing the motion in thin boundary 

layers surrounding the plate, is systematically derived by introducing the 

(3.1) 
transformations, 

$h, 2)  = w2, Q) 
%, 2) = VE!, 5)’ (3.2) 

and Th,A = @h, p (3.3) 
where = Z/E) E - 6/L ‘g 1.  (3.4) 

The stream-function transformation satisfies the requirement that the streamwise 
velocity match uniformly between the boundary layer and outer flow and the 
parameter c is required to maintain a proper balance between the Coriolis and 
viscous terms in the lateral momentum equation (2.10). Motion in the lateral 
direction is driven solely by the Coriolis force, a requirement which is sufficient 
to determine the form of u. The parameter E is determined by requiring the 
coefficient of the highest-order viscous term in (2.9)) governing the streamwise 
motion, to be unity, while all other terms in the equation are of order unity or 
smaller, and the temperature transformation is dictated by the boundary 
conditions. 

In  carrying out the foregoing transformation it is convenient to write the 
Prandtl, Rossby, and Russell numbers as a power of the Reynolds number, 

P = Rd, Ro = Rc and Ru2 = Rb, (3.5) 
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so that, in effect, only one parameter appears in the governing system of equations 
The exponents d, c and b depend on the relative magnitudes of the respective 
parameters as compared with the Reynolds number. 

Substituting relations (3.1)-(3.4) into (2.9)-(2.11) and using (3 .5 )  yields the 
boundary-layer equations 

and 

(3 .7)  

Notice that stratification has at most a second-order influence on heat diffusion 
when /3/0 is of order unity or smaller, and that the baroclinic generation of 
vorticity depends on the Prandtl number via the coupling of the vorticity and 
energy equations. If the Prandtl number is large ( E ~  = (PR)-* < E ) ,  heat dif- 
fusion can be neglected so far as the velocity field is concerned, and the solution 
of (3 .8 )  is 

3.1.  The  inertia-viscous boundary-layer balance 

When the advective terms dominate over the Coriolis and buoyancy terms in 
(3 .6) ,  E takes on the familiar value 

B = R-i, (3.10) 
and, from (3 .7 ) ,  (T is given by 

(3.11) 

To derive the latter result we applied the criterion that the lateral motion is 
driven by the Coriolis force and the boundary conditions require that the highest- 
order viscous term in (3 .7)  be retained to first order. Examining (3.61, we find 
that the inertia-viscous balance with scale (3 .10)  defines the boundary layer on 
the plate, provided the conditions 

(T = R+ = R0- l .  

and I a/Re < 1 ,  i.e. R o  > 1 ( G  > 0 )  

eRb < 1 ,  i.e. Ru2 < R* (b  < +) 
(3 .12a ,  b )  

are satisfied. If the Prandtl number is sufficiently large that heat diffusion is at 
most of second order on the scale (3 .10)  (that is, P > Ra), the temperature field 
can be approximated by (3 .9)  and the latter condition becomes 

e2Rb < 1 ,  i.e. Ru2 < R (b  < 1) .  (3.13) 

When the conditions prescribed by (3 .12a ,  b )  apply, the system (3.6)-(3.8) can 
be solved approximately by means of perturbation similarity expansions of the 
form 



2 P  7 

gg+&flqi-#f;gb = glfL-g;fb+2fL7 gb(O) = gb(") = O, 

P 
hg+P{~f,h;,-&f;hb+h;fb} = &8(t))ps (7f;-f1)7 hb(o) = O7 

P ht)(m) = - 1.72 - 8,b); 

> 
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where the similarity variable 7 is given by 

7 = C1:I.k (3.15) 

The second and third terms in the expansion represent the contributions to the 
velocity and temperature fields arising from the baroclinic generation of vorticity 
and the Coriolis forces respectively. In  writing the above expansions we have 
chosen to neglect second-order influences arising from boundary-layer-induced 
corrections to the outer flow, and have assumed that the baroclinic and Coriolis 
terms are larger than order t. but smaller than order unity. Hence, the equations 
and solutions subsequently derived are applicable in the parameter ranges 

O < b < +  or 1 < R u 2 < R ;  (3.16) 

and O < c < $  or 1<Ro<R*.  (3.17) 

For b 6 0 and c $ the inertia-viscous balance still applies, but then terms of 
order t. must be considered and account must be taken of the displacement- 
induced velocity in the outer flow. 

Substituting the above similarity expansions into the governing set of equa- 
tions and collecting terms of equal order leads to the following system of differen- 
tial equations and corresponding boundary conditions : 

The solutions of ( 3 . 1 8 ~ ~ )  and ( 3 . 1 8 ~ )  are well known (cf. Schlichting 1968), where 
f, is the dimensionless Blasius stream function and h, is the Pohlhausen tempera- 
ture function. Equations ( 3 . 1 9 ~ ~ )  and (3 .19~)  were solved for b = 0 in Redekopp 
(1 970), but a numerical error has subsequently been detected in those solutions. 
The corrected solutions, together with the solutions of the remaining equations 
in the above set, are presented in S 5 of this paper. The modification required in 
the higher-order energy equation ( 3 . 1 9 ~ )  when b = 0 is included by use of the 
8-function notation. Notice that the boundary condition at  infinity must also be 
modified as indicated for that condition. That the revised boundary condition is 
necessary can be seen from the asymptotic solution of ( 3 . 1 9 ~ ) ~  and, as shown in 
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Redekopp (1970) i t  matches identically to the out'er flow when the displacement 
effect of the f l  solution is taken into account. When b = 0 the boundary condition 
fL(m) should also be corrected to include the displacement-induced velocity in the 
outer flow. However, its value is very difficult to  compute, since the displacement 
distribution on the plate and in the downstream wake must be known in order to 
make the calculation. For the sake of approximation, if one makes the calculation 
assuming the plate is semi-infinite, f i c m ,  vanishes identically (see Kelly & 
Redekopp 1970). The calculations presented lat,er for b = 0 are made on the 
basis of the latter approximation. Similarity is not possible for the rotational 
correction to  the temperature field (see ( 3 . 2 0 ~ ) )  when c = 4, so the solution for 
h, applies for 0 < c < a, although f ,  and g, apply equally for c = t. 

3.2.  The buoyancy-viscous boundary-layer balance 

We now examine the case when the baroclinic generation term dominates over 
the advective and Coriolis effects in (3 .6) .  Applying the criterion for determining 

E = R-$(l+b) = (RRu2)g (3 .21)  
e and (T yields 

and ( 3 . 2 3 )  

One cen show directly that this scaling applies when 

b > $, (Ru2 > R8) and c > +( 1 - 2b) ,  (Ro > RgRu-Q). (3 .23)  

A restriction on d can be derived by considering the boundary-layer scaling for 
large Praiidtl numbers. 

l), the 
boundary -layer transformation requires 

When the temperature field is approximated by (3.9) (valid when P 

and 
( 3 . 2 4 a ,  6 )  

showing that the Prandtl number affects the scale of the velocity boundary layer 
through the baroclinic term when buoyancy has a first-order effect. Using the 
above scaling, the boundary-layer equations have the form 

and 

This scaling applies for the parameter conditions 

and 

b > 1, 

c > +( 1 - b) ,  
d > t ( 3 b -  1)) 

(Ru2 > R) ,  

(Ro > R*Ru-I), 

(P  > RdR-4).  
( 3 . 2 6 )  
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The condition on d arises from the requirement that heat diffusion be of order e 
or smaller on the scale ( 3 . 2 4 ~ )  for the temperature to be given by (3.9).  This 
defines the Prandtl number range for which the scaling (3.21), (3.22) is applicable. 

In  the remainder of 3 3 we consider only the non-diffusive velocity field, since 
no similarity solutions for the diffusive case are possible with PIS = O(1). The 
non-diffusive velocity field is obtained by solving ( 3 . 2 5 ~ )  and (3.256) with the 
temperature field given subsequently by (3.91, aside from a thin thermal diffusion 
layer near the boundary, which we neglect, since it has no effect on the velocity 
field to second order in 6 .  Martin & Long (1968) discussed this thermal layer for 
the non-rotating case. 

Equations (3.25u, b) can be solved approximately by expanding the dependent 
variables as 

(3.27) 

where the second and third terms on the right-hand side represent the contribu- 
tions of rotation and advection (respectively) to the boundary-layer velocity field. 
The most important feature of this boundary-layer balance pertains to the 
character of the first-order stream function Y(l). The parabolic equation for Y(1) 
was first derived by Long (1959), who showed (see Martin 1966) that no solutions 
are possible unless the sense of the time-like variable (x) is reversed. This indicates 
that the flow is now blocked, and an upstream viscous wake appears, which was 
studied by Long (1959, 1962), Martin & Long (1968) and Pao (1968). Further- 
more, Martin & Long (1968) showed that the solution for Y(l) is uniformly valid, 
so that there is no stream displacement and the outer flow remains a uniform 
parallel flow. Thus, the next-order correction in (3.27) is of order e2, accounting 
for axial viscous diffusion. 

Introducing the change of variable 

5 = ( 1 - 4 ,  (3.25) 

so that the horizontal co-ordinate is measured upstream from the trailing edge of 
the plate, and using the similarity transformations defined by 

and 

where 11 is given by 7 = CI& (3.30), 

the following sets of equations are obtained from (3.25u, b ) :  

and 
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These equations describe the flow in a boundary layer whose characteristic 
thickness 6 decreases in the streamwise direction as S - (1 - x)a with an upstream 
viscous wake. The solution of (3.31 a) ,  together with experimental verification of 
the derived velocity profile, is presented in Martin & Long (1968) and Pao (1968). 
The solution of the remaining equations is presented later in 9 5 .  

3.3. The Coriolis-viscous boundar~-~ayer balance 

A third boundary-layer structure is possible, which arises when the Coriolis and 
viscous terms in (3.6) form the dominant balance. Moore & Saffman (1969) 
elucidated the dynamics of the motion of a horizontal plate in this r6gime when 
the fluid is homogeneous. They discussed both the case in which the fluid is 
bounded (vertically) and that in which it is unbounded, and showed that the 
basic geostrophic flow over the plate depends crucially on the existence of 
horizontal boundaries in the vicinity of the moving plate. 

Of foremost interest here is the parameter regime in which the Coriolis- 
viscous (Ekman) balance applies. The boundary-layer scale is seen to be given by 

e = Rt(c-1) = (Ro/R)i=Et and g = 1, (3.34) 

where E is the Ekman number (v0/QL2). The requisite parameter conditions can 
be derived directly, showing that the first-order boundary layer is the Ekman 
layer whenever 

c < 0, (Ro < 1) and b < +(l - 3c) (Ru2 < R+/Ro%). (3.35) 

When the Prandtl number is sufficiently large (d > +( 1 - 3c)) that thermal 
diffusion contributes negligibly to the baroclinic generation of vorticity, the 
latter condition is changed to 

b < (1-2c) or Ru2 < R/Ro2. (3.36) 

If the square of the Russell number exceeds the indicated values (e.g. by in- 
creasing the static stability), the Ekman layer is blocked, and the buoyancy- 
viscous balance applies with upstream boundary-layer growth and an upstream 
viscous wake. 

We discuss briefly the case in which the horizontal boundaries are far removed 
from the plate ( H  > L/E,  as shown by Moore & Saffman), and the basic inviscid 
flow is known a priori. The first-order velocity field is then given by the non- 
divergent Ekman-layer solution 

(3.37a, b )  I Y&! = 6- +e-c(sin 6- cos 6) - + 
V{i! c )  = e-5 sin 6. and 

The solution must be modified in regions of scale Eh at the leading and trailing 
edges of the plate to account for the streamwise change in boundary condition a t  
those points. 

The thermal field can be calculated subsequently from the energy equation, 
which to first-order is given by 

PRO( 1 - e-5 cos 6) @il) - @E) = 0. (3.38) 
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An exact solution is difficult to obtain, but two limiting cases are easily solved. 
These are 

when (PRO < 1), and, when (PRO $ l),  

(3.39 a)  

(3.393) 

where y ( a , x )  is the incomplete gamma function and h = (PRo/(gx))*<. The 
diffusive temperature field is important, since it provides the mechanism for 
establishing a streamwise variation in the velocity. The streamwise growth of the 
thermal boundary layer causes a lateral component of vorticity to be generated 
through the baroclinic effect, which, in turn, affects the velocity field. When this 
vorticity becomes a first-order quantity, the Ekman layer is 'blocked', and the 
boundary layer transists to the structure described in $3.2, i.e. the buoyancy- 
viscous case. 

3.4. A summary of the boundary-layer r igirnes 

A convenient representation of the results of the scaling analysis presented in 
§§ 3.1-3.3 is obtained by portraying graphically the regimes of applicability of 
the three characteristic boundary-layer balances in Rossby-Russell number 
paramcLer space. The Rossby-Russell number plane (see figure 2) is divided into 
three rcgions with the heavy lines defining the transition boundaries between the 
various rkgimes. At the point of intersection of the three heavy lines, the advec- 
tive, Coriolis, buoyancy, and viscous terms are all important in the first-order 
boundary-layer balance. The dashed lines define the left-hand boundary of tLe 
buoyancy-viscous regime when the Prandtl number is large enough to render the 
non-diffusive approximation valid to first-order. Heat diffusion clearly enhances 
the role of buoyancy and enlarges the rkgiine of applicability of the buoyancy- 
viscous balance. Recall that in the buoyancy-viscous regime the boundary layer 
grows in the upstream direction and an upstream wake is present. 

One of the important results of this analysis is the condition for blocking o€ the 
non-divergent Ekman layer. The Ekman layer domain is limited by the Russell 
number and in a manner which depends on the Prandtl number. The blocking 
derives from the baroclinic generation of vorticity and is quite different from the 
Ekman-layer blocking discussed by Barcilon C% Pedlosky (1967), in which case the 
static stability becomes sufficiently large to inhibit the steady vertical velocity 
induced by the divergent Ekman layer. The condition derived by Barcilon & 
Pedlosky is shown by the dotted line in figure 2,  which, in the present notation, 
is given by 

Ru2 (RRo3)-*. 

The first-order solutions in (3.14), (3.29) and (3.37) are valid in their entire 
respective domains. The cross-hatched regions on figure 2 indicate the domains 
where the second- and third-order terms in the similarity solutions derived 
previously are valid. Region A defines the parameter space where expansion 
(3.14) is valid and region B defines the space where (3.29) applies. 
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4. The outer flow 
The first-order correction to the outer flow is now discussed for each of the three 

regions in the Rossby-Russell number parameter space shown in figure 2. 
For the inertia-viscous regime (c  > 0) the solution for the stream function and 

the temperature was obtained for the entire range of Russell number in Kelly & 
Redekopp (1970) and Redekopp (1970) for non-diffusive (diffusive) flow. The 
important result of those analyses is the existence of an intermediate layer of 

3 

1 

f 

G O  

-4 

-1 

-4 

Inertia-viscous 
balance regime 

Coriolis-viscous 
balance rdgime 

I 
I 
I 

Buo yancy-viscous 
balance rkgime 

I 
I 
I 
I 

*. 

I I I 1 I a. 1 

-1 -4 0 3 1 8 2 

b 

FIGURE 2. The characteristic boundary-layer balance regimes in 
Rossby-Russell number space. 

scale Rdb for the range 0 < b < l ( 0  < b < +) in non-diffusive (diffusive) flow, 
through which the Blasius boundary layer matches uniformly to the parallel 
external stream. Both independent variables in this intermediate layer must be 
scaled by the wavelength of internal waves moving with phase velocity U, and 
oscillating at the intrinsic frequency (g/9J* rather than the plate length L. 
This result shows clearly that the condition for incipient blocking is 

Ru2 N R(Ru2 N R*) 

for non-diffusive (diffusive) flow, as derived from the boundary -layer 
analysis, rather than the much weaker condition, Ru2 9 1, derived from a 



780 L. G. Redekopp 

perturbation analysis of the unscaled equations (2.9)-(2.11); and it shows how the 
static stability decreases the vertical extent of the plate disturbance until i t  
becomes of the order of the boundary-layer thickness and blocking occurs. 
Furthermore, it shows that streamwise variations become increasingly important, 
and that the complete elliptic equations must be considered as the blocking 
condition is approached. The required expansions and matching conditions for 
the stream function and temperature are given in Kelly & Redekopp (1970) and 
Redekopp (1970), while the solution for the lateral velocity can be obtained from 
the relation 

(4.1) V h , d  = (1lRo) [ I l r l k ! Z ) +  ... I, 

where $b,z) = X + € ~ { : ~ . ) + . ’ . .  (4-2) 

I n  the bouyancy-viscous balance regime the solution for the outer flow is 
trivial since the boundary-layer solution is uniformly valid. Thus, the outer flow 
remains that of a uniform, parallel stream. A similar conclusion arises for the 
Ekman layer rBgime when the plate is far removed ( H  > L/E)  from other hori- 
zontal boundaries, since then the boundary layer is described by the non- 
divergent Ekman solution (3.37). 

5. Numerical results 
5.1. Results for the inertia-viscous rdgime 

The effects of stratification and rotation on the boundary-layer flow in the inertia- 
viscous rBgime are characterized by the solution of equations (3.18)-(3.20). An 
important measure of these effects is their influence on the shear and heat transfer 
a t  the plate surface. Define dimensionless friction and heat tmnsfer coefficients as 

Then the following expressions for these quantities evaluated a t  the plate surface 
for the region of the inertia-viscous regime (designated by the cross-hatched 
area A in figure 2) are obtained: 

These expressions apply for either the upper or lower surface of the plate. The 
functions f, g and h are defined in (3.14), and Rz, denotes the Reynolds number 
based on the dimensional length x1 measured from the leading edge of the plate 
in the streamwise direction. Numerical values for the shear and heat-flux func- 
tions appearing in the above expressions are shown graphically in figures 3 and 4 
for a range of the stability parameter /3/S and the Prandtl number P respectively. 
The results for f i ( v )  and hb(o) ( b  = 0) are corrected versions of the corresponding 
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quantities presented in Redekopp (1970). The results shown are for a heated 
plate (PI0 > 0), but can be extended directly for a cooled plate (PI0 < 0) by 
simply reversing the sign of fb) gb ,  and h,, as is clearly evident from (3.19). 

Both the stability parameter P/O, and the Prandtl number have a strong 
influence on the shear and heat flux; the former through its direct appearance in 
(3.19a), (3.19c), and the latter through its influence onthe first-order temperature 
field h,, which affects f b  (and consequently gb and hb) via the right-hand side of 
(3.19a). (See Redekopp (1970) for a further discussion of the importance of these 

2.0 

1 .o 

0 1 .o 2.0 3.0 4.0 5.0 

,s/e 
FIUURE 3. The shear and heat flux as a function of the 

stability parameter p/@ (P  = 1.0). 

parameters on f i ( 0 )  and Fukp).) Stratification either aids or opposes the primary 
Blasius shear, depending on whether the plate is heated or cooled (respectively). 
Rotation is seen to always diminish the Blasius shear. Computing the total 
streamwise frictional drag on the plate per unit width yields 

Thus, for example, when lp/Sl and P are unity and Ru2/R* and Ro2 are both a 
tenth, stratification increases (or decreases, depending on the sign of 0) the drag 
by about 20 %, androtation decreases the drag by approximately 8 yo. Decreasing 
either the Prandtl number ofp/0, or both, makes the effect of stratification more 
pronounced. Correspondingly, Stratification changes the total heat transfer by 
5 yo, and rotation causes approximately a 9 yo change. 
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I I 1 I I I I l l  I 1 I I 1  1 1 1 1  
1 .o 10.0 
P 

FIGURE 4. The shear and heat flux as a function of the 
Prandtl number (P/@ = 1.0). 

The streamwise and lateral velocities are shown in figure 5. The total compo- 
nents can be computed from the relations 

and 

Just as stratification and rotation significantly contribute to the frictional drag 
of the Blasius boundary layer, they will also influence the stability of the Blasius 
boundary layer through their modification of the mean velocity profile. 
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5.2. Results for the non-diffusive buoyancy-viscous rkgime 

The frictional drag of the plate for the parameter region defined by the cross- 
hatched area B on figure 2 is given by the expressions 

(5.5u, b )  

1.154 R u ~  * R Cpa) = ~ (-p) [ 1 + O*235( 1 - x) ____ - ___ - 
( 1  -x)* (RuRo)~ (1-x)BRu 

R o  Ru2R 
and Cy,z)=  -(-) 0.12 1-x t R 

si(r) 
-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4 
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FIGURE 5. Velocity profiles for the inertia-viscous boundary-layer r6gime 
(P = 1.0, pie = 1.0). 

The second- and third-order terms in the brackets provide the higher-order correc- 
tions for the influence of rotation and advection, respectively. Rotation increases 
both the streamwise and lateral frictional coefficients over their first-order values 
while advection causes a decrease in each of the coefficients. Computing the total 
streamwise frictional drag on the plate per unit width yields the expression 

- 0.006 "1 . +CD = 1.54 F)' [ 1 + 0.10 R 
(RuRo)~ Ru 

Including the effect of rotation increases the first-order total drag by, at most, 
10 yo, and the contribution from advection is always less than 1 yo. 

The streamwise velocity profiles are shown in figure 6. Interesting features of 
these profiles include the damped-wave-like structure and the smallness of the 
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correction due to inertial effects. The first-order profile is discussed by Martin & 
Long (1968)) who show that the asymptotic form of the solution for Fl has the 
form of an exponentially damped wave. The corrections due to rotation and 

13.0 

12.0 

11.0 

10.0 

9.0 

8.0 

7.0 
7 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0 

FIGURE 6. Streamwise velocity profiles for the buoyancy-viscous 
boundary-layer r6gime. 

advection increase the vertical extent and waviness of the velocity field over 
that of the first-order distribution alone. However, the discrepancy between the 
theoretical and experimental velocity profiles in the outer region of the boundary 
layer reported by Martin & Long and by Pao (1968) must be due to the finiteness 
of the plate and the upstream wake disturbance, not the neglect of advection, 
since the advective correction is too small and in the wrong direction to yield the 
observed broad region of velocity defect at the outer edge of the boundary layer. 
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5.3. Results for the E k m a n  rdggime 

For completeness, we present the shear and heat-flux coefficients for the Ekman 
r6gime as well. Using the prior definitions and (3.37) and (3.39) yields 

1 
(RoR)B 

Cp.2’ = C ( U . 2 ,  = ~ 

for the frictional drag and 

(5.7) 

( 5 . 8 ~ ~  b )  i 1 ple c -  +- (PRO < l), 
h - -  ( 7 ~  x PR)3 PR 

(81 x2P4R3Ro)-* +- (PRO B I), PR 

for the heat transfer. The first heat-transfer coefficient derives from the Oseen 
approximation to the energy and, consequently, is independent of the Rossby 
number. Note that it is a valid approximation even for Prandtl numbers of 
order unity when the Rossby number is small. 

6. Summary 
The description of the boundary layer on a horizontal plate in a stratified flow 

(Kelly & Redekopp (1970) and Redekopp (1970)) has been extended to include 
the influence of fluid rotation in the plane of the plate. The analysis extends the 
blocking criterion, derived in Kelly & Redekopp (1970) and Redekopp (1970) for 
all Russell numbers, to cover the entire range of Rossby numbers as well. Rotation 
modifies the former blocking criterion when the Rossby number is less than 
unity, extending the transition to higher Russell numbers. The parameter 
conditions specifying the onset of blocking are given by 

Ri Ro > 1, 
IlU2 ‘(R:/Ro3) Ro < 1, 

when P < O(Rd/R)*, and 
Ro > 1, 

RU2 (R;02] Ro < 1, 
when P > 0 (Ru6/R)*. 

Solutions for the velocity and temperature fields in the inertia-viscous and 
buoyancy-viscous r6gimes show that the higher-order effects of stratification and 
rotation significantly influence the plate drag and heat transfer in the former 
rhgime, but that rotation and especially advection influence the flow character- 
istics negligibly in the latter rhgime. 
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